Endogenous nitric oxide inhibits bronchoconstriction induced by cold-air inhalation in guinea pigs: role of kinins.
نویسندگان
چکیده
Inhalation of cold air in guinea pigs increases total pulmonary resistance (RL), an effect that is mediated by kinins and tachykinins. Bronchoconstriction induced by bradykinin (BK) inhalation in guinea pigs is markedly inhibited by nitric oxide (NO) release from the airway epithelium. We investigated whether endogenous NO modulates the increase in RL induced by inhalation of cold air. In anesthetized and artificially ventilated guinea pigs pretreated with atropine, cold-air inhalation (13 degrees C in the trachea) for 5 min did not increase RL. Pretreatment with intravenous N(G)-nitro-L-arginine methyl ester (L-NAME) (but not with its inactive enantiomer, D-NAME) increased RL, an effect reversed by L-Arg. The increase in RL induced by cold air after L-NAME was abolished by the tachykinin NK2-receptor antagonist SR 48968 or the kinin B2-receptor antagonist, HOE 140. After administration of SR 48968, inhalation of cold air reduced baseline airway tone. However, after HOE 140, cold-air inhalation did not affect baseline airway tone. L-NAME exaggerated the bronchoconstriction induced by BK. However, L-NAME did not affect capsaicin-induced bronchoconstriction. BK increased cyclic guanosine monophosphate (cGMP) levels in strips of guinea pig trachealis muscle in vitro, whereas the selective tachykinin NK2-receptor agonist [betaAla8]neurokinin A (4-10) was without effect. The present data suggest that bronchoconstriction induced by cold-air inhalation and mediated by kinin and tachykinin release is inhibited by endogenous NO, and that kinins, but not tachykinins or cold air alone, release bronchorelaxant NO.
منابع مشابه
Adrenomedullin inhibits ovalbumin-induced bronchoconstriction and airway microvascular leakage in guinea-pigs.
Human adrenomedullin is a potent vasodilator with bronchodilation properties. The effects of adrenomedullin on antigen-induced bronchoconstriction and airway microvascular leakage in guinea-pigs was investigated. The portion of the adrenomedullin molecule possessing these pulmonary active profiles was also examined, using two truncated adrenomedullin molecules: adrenomedullin (1-25) and adrenom...
متن کاملEffect of nitric oxide synthase inhibitor on allergen- and hyperventilation-induced bronchoconstriction in guinea-pigs.
To elucidate the role of endogenous nitric oxide (NO) in allergen- (AIB) and hyperventilation-induced bronchoconstriction (HIB), the effects of an NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on AIB and HIB were studied in guinea-pigs. In the AIB group, 21 anaesthetized guinea-pigs, actively sensitized with 1% ovalbumin, were challenged with aerosolized 0.1% ovalbumin solut...
متن کاملBronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide.
Gastroesophageal acid reflux into the airways can trigger asthma attacks. Indeed, citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We investigated the role of tachykinins, bradykinin, and nitric oxide (NO) on the citric acid- induced bronchoconstriction in anesthetized and artificially ventilated guinea pigs. Citric...
متن کاملBronchodilator action of inhaled nitric oxide in guinea pigs.
The effects of inhaling nitric oxide (NO) on airway mechanics were studied in anesthetized and mechanically ventilated guinea pigs. In animals without induced bronchoconstriction, breathing 300 ppm NO decreased baseline pulmonary resistance (RL) from 0.138 +/- 0.004 (mean +/- SE) to 0.125 +/- 0.002 cmH2O/ml.s (P less than 0.05). When an intravenous infusion of methacholine (3.5-12 micrograms/kg...
متن کاملRole of nitric oxide during hyperventilation-induced bronchoconstriction in the guinea pig.
Airway function is largely preserved during exercise or isocapnic hyperventilation in humans and guinea pigs despite likely changes in airway milieu during hyperpnea. It is only on cessation of a hyperpneic challenge that airway function deteriorates significantly. We tested the hypothesis that nitric oxide, a known bronchodilator that is produced in the lungs and bronchi, might be responsible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 157 2 شماره
صفحات -
تاریخ انتشار 1998